Abstract
AbstractElectrocalorics (EC) is potentially more efficient than refrigeration and heat pumps based on compressors and does not need detrimental fluids. Current EC-prototypes use solid-state contact or forced convection with liquids to transfer the heat generated from the EC-material, which inhibits high cycle frequencies and thus limits power density. Here we present a heatpipe system solution, where the heat transfer is realized through condensation and evaporation of ethanol as a heat transfer fluid. Our prototype with lead scandium tantalate (PST) EC-material working at 5 Hz shows a specific cooling power of 1.5 W g−1. This is one order of magnitude more than previously reported for ceramic EC-prototypes. Overcoming the limits of slow heat transfer is essential to reach high specific cooling powers enabling a future commercial success of the technology.
Funder
This work was supported by the Fraunhofer Society through the Fraunhofer Lighthouse Project ElKaWe.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献