Implementation of binarized neural networks immune to device variation and voltage drop employing resistive random access memory bridges and capacitive neurons

Author:

Ezzadeen MonaORCID,Majumdar Atreya,Valorge Olivier,Castellani Niccolo,Gherman Valentin,Regis Guillaume,Giraud Bastien,Noel Jean-Philippe,Meli Valentina,Bocquet Marc,Andrieu Francois,Querlioz DamienORCID,Portal Jean-Michel

Abstract

AbstractResistive Random Access Memories (ReRAM) arrays provides a promising basement to deploy neural network accelerators based on near or in memory computing. However most popular accelerators rely on Ohm’s and Kirchhoff’s laws to achieve multiply and accumulate, and thus are prone to ReRAM variability and voltage drop in the memory array, and thus need sophisticated readout circuits. Here we propose a robust binary neural network, based on fully differential capacitive neurons and ReRAM synapses, used in a resistive bridge fashion. We fabricated a network layer with up to 23 inputs that we extrapolated to large numbers of inputs through simulation. Defining proper programming and reading conditions, we demonstrate the high resilience of this solution with a minimal accuracy drop, compared to a software baseline, on image classification tasks. Moreover, our solution can achieve a peak energy efficiency, comparable with the state of the art, when projected to a 22 nanometer technology.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3