Abstract
AbstractVisible light optical coherence tomography (VIS-OCT) is an emerging ophthalmic imaging method featuring ultrahigh depth resolution, retinal microvascular oximetry, and distinct scattering contrast in the visible spectral range. The clinical utility of VIS-OCT is hampered by the fundamental trade-off between the imaging depth range and axial resolution, which are determined by the spectral resolution and bandwidth, respectively. To address this trade-off, here we developed a dual-channel VIS-OCT system with three major advancements including the first linear-in-K VIS-OCT spectrometer to decrease the roll-off, reference pathlength modulation to expand the imaging depth range, and per-A-line noise cancellation to remove excess noise, Due to these unique designs, this system achieves 7.2 dB roll-off over the full 1.74 mm depth range (water) with shot-noise limited performance. The system uniquely enables >60° wide-field imaging which would allow simultaneous imaging of the peripheral retina and optic nerve head, as well as ultrahigh 1.3 µm depth resolution (water). Benefiting from the additional near-infrared (NIR) channel of the dual-channel design, this system is compatible with Doppler OCT and OCT angiography (OCTA). The comprehensive structure-function measurement enabled by this dual-channel VIS-OCT system is an advance towards adoption of VIS-OCT in clinical applications.
Funder
U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quantitative Optical Imaging of Oxygen in Brain Vasculature;The Journal of Physical Chemistry B;2024-07-11
2. 可见光光学相干层析成像技术发展综述(特邀);Chinese Journal of Lasers;2024