USP35, regulated by estrogen and AKT, promotes breast tumorigenesis by stabilizing and enhancing transcriptional activity of estrogen receptor α

Author:

Cao JiaweiORCID,Wu Du,Wu Guang,Wang Yaqi,Ren Tianhao,Wang Yang,Lv Yingshuai,Sun Wei,Wang JieyiORCID,Qian Changrui,He Licai,Yang KaiyanORCID,Li HongzhiORCID,Gu HaihuaORCID

Abstract

AbstractAlthough endocrine therapies targeting estrogen receptor α (ERα) are effective in managing ER positive (+) breast cancer, many patients have primary resistance or develop resistance to endocrine therapies. In addition, ER+ breast cancer with PIK3CA activating mutations and 11q13-14 amplification have poor survival with unclear mechanism. We uncovered that higher expression of deubiquitinase USP35, located in 11q14.1, was associated with ER+ breast cancer and poor survival. Estrogen enhanced USP35 protein levels by downregulating USP35-targeting miRNA-140-3p and miRNA-26a-5p. USP35 promoted the growth of ER+ breast cancer in vitro and in vivo, and reduced the sensitivity of ER+ breast cancer cells to endocrine therapies such as tamoxifen and fulvestrant. Mechanistically, USP35 enhanced ERα stability by interacting and deubiquitinating ERα, and transcriptional activity of ERα by interacting with ERα in DNA regions containing estrogen response element. In addition, AKT, a key effector of PI3K, phosphorylated USP35 at Serine613, which promoted USP35 nuclear translocation, ERα transcriptional activity, and the growth of ER+ breast cancer cells. Our data indicate that USP35 and ERα form a positive feedback loop in promoting the growth of ER+ breast cancer. USP35 may be a treatment target for ER+ breast cancer with endocrine resistance or with PIK3CA mutations or hyperactivation of the PI3K pathway.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3