Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis

Author:

Xu Minyi,Tao Jin,Yang Yidong,Tan Siwei,Liu Huiling,Jiang Jie,Zheng Fengping,Wu Bin

Abstract

AbstractFerroptosis has recently emerged as an iron-dependent form of nonapoptotic cell death, which is also a regulated necrosis process and a response to tumor suppression. However, whether ferroptosis is involved in ulcerative colitis (UC) is unknown. The aims of this study were to investigate whether the ferroptosis is involved in UC, particularly intestinal epithelial cell (IEC) death, and to analyze the effect of the nuclear factor kappa Bp65 subunit (NF-κBp65) on ferroptosis. The gene expression of ferroptosis-related proteins was assessed in intestinal mucosal samples from human UC. The experimental model of UC was induced with dextran sulfate sodium (DSS). Ferroptosis of IECs was evaluated, the effect of NF-κBp65 on ferroptosis was analyzed by using IEC-specific NF-κBp65-deleted mice (p65IEC-KO), and the ferroptosis signaling pathway was investigated in vitro and in vivo. The results showed that ferroptosis was significantly induced in the IECs from UC patients and mice with colitis, and the ferroptosis was mediated by endoplasmic reticulum (ER) stress signaling. The specific deletion of IEC NF-κBp65 clearly upregulated ferroptosis and exacerbated colitis, and the result showed that phosphorylated-NF-κBp65 significantly inhibited ER stress signaling by directly binding eukaryotic initiation factor 2α. These data indicate that ferroptosis contributes to UC via ER stress-mediated IEC cell death, and that NF-κBp65 phosphorylation suppresses ER stress-mediated IEC ferroptosis to alleviate UC. The results suggest that ferroptosis involves in IEC death in UC, NF-κBp65 play a critical role in the ferroptotic inhibition, and ferroptosis is a potential therapeutic target for UC.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3