Abstract
AbstractErythropoietin (EPO) suppresses drug-induced apoptosis in EPO-receptor-positive leukemia cells and allows cells to persist after drug treatment by promoting cellular senescence. Importantly a small proportion of senescent cells can re-enter the cell cycle and resume proliferation after drug treatment, resulting in disease recurrence/persistence. Using a single-cell assay to track individual cells that exit a drug-induced senescence-like state, we show that cells exhibit asynchronous exit from a senescent-like state, and display different rates of proliferation. Escaped cells retain sensitivity to drug treatment, but display inter-clonal variability. We also find heterogeneity in gene expression with some of the escaped clones retaining senescence-associated gene expression. Senescent leukemia cells exhibit changes in gene expression that affect metabolism and senescence-associated secretory phenotype (SASP)-related genes. Herein, we generate a senescence gene signature and show that this signature is a prognostic marker of worse overall survival in AML and multiple other cancers. A portion of senescent leukemia cells depend on lysosome activity; chloroquine, an inhibitor of lysosome activity, promotes senolysis of some senescent leukemia cells. Our study indicates that the serious risks associated with the use of erythropoietin-stimulating agents (ESAs) in anemic cancer patients may be attributed to their ability to promote drug-tolerant cancer cells through the senescence program.
Funder
D.M. was funded by York University, the Daugherty Family Fund, and a gift from Larry Smith and Nancy Smith.
York University
K.K was supported by a Project Grant ("Translational Control by the La and La-Related Proteins”) from CIHR.
S.M.S. was funded by York University, the Daugherty Family Fund, and a gift from Larry Smith and Nancy Smith.
M.A.B. supported by a Project Grant ("Translational Control by the La and La-Related Proteins”) from CIHR.
Cancer Research Network of the Fonds de Recherche du Québec–Santé Leucegene was supported by Genome Canada and Genome Quebec
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献