Pathological convergence of APP and SNCA deficiency in hippocampal degeneration of young rats

Author:

Wang Yajie,Miao Zhikang,Xu Chang,Cai Ying,Yang Yuting,Hu Yue,Zhao MengnaORCID,Shao Yue,Li Zhiqiang,Chen Jincao,Chen ShiORCID,Wang LianrongORCID

Abstract

AbstractThe common pathogenesis of Alzheimer’s disease (AD) and Parkinson’s disease (PD) has been supported by biochemical, genetic and molecular evidence. Mitochondrial dysfunction is considered to be the common pathology in early AD and PD. The physiological regulation of APP and α-synuclein on mitochondria remains unclear, let alone whether they share common regulatory mechanisms affecting the development of neurodegenerative diseases. By studying gene knockout rats, the commonality of physiological APP and α-synuclein in maintaining mitochondrial function through calcium homeostasis regulation was revealed, which was critical in inhibiting hippocampal degeneration in young rats. APP and α-synuclein both control hippocampal mitochondrial calcium intake and outflow. In the mitochondrial calcium influx regulation, APP and α-synuclein are located on the mitochondrial-associated endoplasmic reticulum membrane (MAM) and converge to regulate the IP3R1-Grp75-VDAC2 axis. Mitochondrial calcium outflow is redundantly promoted by both α-synuclein and APP. Loss of APP or SNCA leads to mitochondrial calcium overload, thus enhancing aerobic respiration and ER stress, and ultimately causing excessive apoptosis in the hippocampus and spatial memory impairment in young rats. Based on this study, we believe that the physiological function impairment of APP and SNCA is the early core pathology to induce mitochondrial dysfunction at the early stage of AD and PD, while the IP3R1-Grp75-VDAC2 axis might be the common drug target of these two diseases.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3