Developmental modeling of hepatogenesis using obese iPSCs-hepatocyte differentiation uncovers pathological features

Author:

Varghese Divya Saro,Alawathugoda Thilina T.,Sheikh Muhammad Abid,Challagandla Anil Kumar,Emerald Bright StarlingORCID,Ansari Suraiya A.ORCID

Abstract

AbstractObesity is a multigene disorder. However, in addition to genetic factors, environmental determinants also participate in developing obesity and related pathologies. Thus, obesity could be best described as a combination of genetic and environmental perturbations often having its origin during the early developmental period. Environmental factors such as energy-dense food and sedentary lifestyle are known to be associated with obesogenicity. However, the combinatorial effects of gene-environment interactions are not well understood. Understanding the role of multiple genetic variations leading to subtle gene expression changes is not practically possible in monogenic or high-fat-fed animal models of obesity. In contrast, human induced pluripotent stem cells (hiPSCs) from individuals with familial obesity or an obesogenic genotype could serve as a good model system. Herein, we have used hiPSCs generated from normal and genetically obese subjects and differentiated them into hepatocytes in cell culture. We show that hepatocytes from obese iPSCs store more lipids and show increased cell death than normal iPSCs. Whole transcriptome analyses in both normal and obese iPSCs treated with palmitate compared to control revealed LXR-RXR and hepatic fibrosis pathways were enriched among other pathways in obese iPSCs compared to normal iPSCs. Among other genes, increased CD36 and CAV1 expression and decreased expression of CES1 in obese iPSCs could have been responsible for excess lipid accumulation, resulting in differential expression of genes associated with hepatic fibrosis, a key feature of non-alcoholic fatty liver disease (NAFLD). Our results demonstrate that iPSCs derived from genetically obese subjects could serve as an excellent model to understand the effects of this multigene disorder on organ development and may uncover pathologies of NAFLD, which is highly associated with obesity.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3