Reticulon 2 promotes gastric cancer metastasis via activating endoplasmic reticulum Ca2+ efflux-mediated ERK signalling

Author:

Song Shushu,Liu Bo,Zeng Xiaoqing,Wu Yingying,Chen Hao,Wu Hao,Gu Jianxin,Gao Xiaodong,Ruan YuanyuanORCID,Wang Hongshan

Abstract

AbstractGastric cancer ranks fourth for mortality globally among various malignant tumours, and invasion and metastasis are the major reason leading to its poor prognosis. Recently, accumulating studies revealed the role of reticulon proteins in cell growth and transmigration. However, the expression and biological function of reticulon proteins in human gastric cancer remain largely unclear. Herein, we explored the potential role of reticulon 2 (RTN2) in the progression of gastric cancer. Tissue microarray was used to determine the expression levels of RTN2 in 267 gastric cancer patients by immunohistochemistry. Gastric cancer cell lines were utilised to examine the influences of RTN2 on cellular migration and invasion abilities, epithelial-to-mesenchymal transition (EMT) and signalling pathway. In vivo studies were also performed to detect the effect of RTN2 on tumour metastasis. We found that RTN2 expression was notably upregulated in tumour tissues compared to pericarcinomatous tissues. High RTN2 expression was positively correlated with patients’ age, vessel invasion, tumour invasion depth, lymph node metastasis and TNM stage. Besides, high RTN2 staining intensity was associated with adverse survival which was further identified as an independent prognostic factor for gastric cancer patients by multivariate analysis. And the predictive accuracy was also improved when incorporated RTN2 into the TNM-staging system. RTN2 could promote the proliferation, migration and invasion of gastric cancer cells in vitro and lung metastasis in vivo. Mechanistically, RTN2 interacted with IP3R, and activated ERK signalling pathway via facilitating Ca2+ release from the endoplasmic reticulum, and subsequently drove EMT in gastric cancer cells. These results proposed RTN2 as a novel promotor and potential molecular target for gastric cancer therapies.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3