Abstract
AbstractGlioblastoma (GBM) is the most aggressive and lethal brain tumor in adults. This study aimed to investigate the functional significance of aryl hydrocarbon receptor nuclear translocator (ARNT) in the pathogenesis of GBM. Analysis of public datasets revealed ARNT is upregulated in GBM tissues compared to lower grade gliomas or normal brain tissues. Higher ARNT expression correlated with the mesenchymal subtype and poorer survival in GBM patients. Silencing ARNT using lentiviral shRNAs attenuated the proliferative, invasive, and stem-like capabilities of GBM cell lines, while ARNT overexpression enhanced these malignant phenotypes. Single-cell RNA sequencing uncovered that ARNT is highly expressed in a stem-like subpopulation and is involved in regulating glycolysis, hypoxia response, and stress pathways. Mechanistic studies found ARNT activates p38 mitogen-activated protein kinase (MAPK) signaling to promote chemoresistance in GBM cells. Disrupting the ARNT/p38α protein interaction via the ARNT PAS-A domain restored temozolomide sensitivity. Overall, this study demonstrates ARNT functions as an oncogenic driver in GBM pathogenesis and represents a promising therapeutic target.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference65 articles.
1. Guo QL, Dai XL, Yin MY, Cheng HW, Qian HS, Wang H, et al. Nanosensitizers for sonodynamic therapy for glioblastoma multiforme: current progress and future perspectives. Mil Med Res. 2022;9:26.
2. Domenech M, Hernandez A, Plaja A, Martinez-Balibrea E, Balana C. Hypoxia: the cornerstone of glioblastoma. Int J Mol Sci. 2021;22:12608.
3. Khan I, Baig MH, Mahfooz S, Imran MA, Khan MI, Dong JJ, et al. Nanomedicine for glioblastoma: progress and future prospects. Semin Cancer Biol. 2022;86:172–86.
4. Alafate W, Xu D, Wu W, Xiang J, Ma X, Xie W, et al. Loss of PLK2 induces acquired resistance to temozolomide in GBM via activation of notch signaling. J Exp Clin Cancer Res. 2020;39:239.
5. Cheng J, Meng J, Zhu L, Peng Y. Exosomal noncoding RNAs in Glioma: biological functions and potential clinical applications. Mol Cancer. 2020;19:66.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献