microRNA-17 functions as an oncogene by downregulating Smad3 expression in hepatocellular carcinoma

Author:

Lu Zhufeng,Li Xiuhua,Xu Yongfeng,Chen Miaomiao,Chen Wei,Chen Tao,Tang Qinghe,He ZhiyingORCID

Abstract

Abstract The sekelsky mothers against dpp3 (Smad3) functions as a transcriptional modulator activated by transforming growth factor-β (TGF-β). Accumulated evidences indicated that Smad3 played the important roles in carcinogenesis and progression of hepatocellular carcinoma (HCC). Up to now, the regulatory mechanism of Smad3 in HCC still remains unclear. It has been known that some particular microRNAs (miRNAs) involve in carcinogenesis through the regulation of gene expressions with targeting mRNAs. In our study, the unknown candidates of miRNAs that target Smad3 mRNA were searched by using a newly established in vivo approach, the miRNA in vivo precipitation (miRIP). Using a loss-of-function assay, we demonstrated that miR-17 directly targeted Smad3 in HCC cells and inhibition on miR-17 increased Smad3 expression. Furthermore, we found that downregulation on Smad3 expression was consistent with high level of miR-17 in HCC tissues of patients when compared with around normal liver tissues. The manipulated miR-17 silence in HCC cells suppressed their growth of both in vitro and in vivo. Such suppression on cell growth could be recovered through downregulating Smad3. In addition, miR-17 affected cell proliferation through arresting cell cycle in G1 phase. The negative correlation between levels of miR-17 and protein levels of Smad3 was supported by the results of analysis with HCC tissue chip. In summary, for the first time, we confirmed that miR-17 directly targeted Smad3 mRNA and downregulated Smad3 protein expression in HCC. Our results indicated that the increased expression of miR-17 promoted carcinogenesis of HCC through down-regulations of Smad3, suggesting miR-17 might serve as the potential diagnostic and therapeutic targets for clinical HCC.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3