Aberrant super-enhancer-driven oncogene ENC1 promotes the radio-resistance of breast carcinoma

Author:

Li LinORCID,Wang NanORCID,Zhu MingzhiORCID,Xiong YouyiORCID,Wang FangORCID,Guo GuangchengORCID,Wang XinxingORCID,Gu YuanyanORCID

Abstract

AbstractPoor response of tumors to radiotherapy is a major clinical obstacle. Because of the dynamic characteristics of the epigenome, identification of possible epigenetic modifiers may be beneficial to confer radio-sensitivity. This research was set to examine the modulation of ectodermal-neural cortex 1 (ENC1) in radio-resistance in breast carcinoma (BC). In silico identification and immunohistochemical staining revealed that overexpression of ENC1 promoted BC metastasis to the bone and brain. Moreover, its overexpression promoted the translocation of YAP1/TAZ into the nucleus and enhanced expression of GLI1, CTGF, and FGF1 through the Hippo pathway. ENC1 expression was controlled by a ~10-kb long SE. ENC1-SEdistal deletion reduced ENC1 expression and inhibited the malignant behavior of BC cells and their resistance to radiotherapy. The binding sites on the ENC1-SE region enriched the shared sequence between TCF4 and ENC1 promoter. Knocking-down TCF4 inhibited luciferase activity and H3K27ac-enriched binding of the ENC1-SE region. Additionally, SE-driven ENC1 overexpression mediated by TCF4 may have clinical implications in radio-resistance in BC patients. Our findings indicated that ENC1 overexpression is mediated by SE and the downstream TCF4 to potentiate the Hippo/YAP1/TAZ pathway. Targeting this axis might be a therapeutic strategy for overcoming BC radio-resistance.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3