Abstract
AbstractGastric neuroendocrine carcinoma (GNEC), a heterogeneous group of neuroendocrine neoplasms (NENs) derived from gastric neuroendocrine cells, has been shown to be more aggressive and chemoresistant in gastric cancer, which contributes to the poor prognosis. We analysed transcriptome profiles of tumor/non-tumor tissue from GNEC patients and GNEC cell lines to explore the underlying mechanisms. Our results suggest a critical role for synaptosomal-associated protein 25 kDa (SNAP25) in GNEC. SNAP25 was found to stabilize Akt via modulating its monoubiquitination. We further identified RUN domain containing 3A (RUNDC3A) as an upstream molecule that regulates SNAP25 expression, which is associated with tumor progression and chemoresistance in GNECs. Moreover, these findings were extended into multiple NENs including neuroendocrine carcinomas in the intestinal tract, lungs and pancreas. Identifying the RUNDC3A/SNAP25/Akt axis in NENs may provide a novel insight into the potential therapeutic target for patients with NENs.
Funder
Fundo para o Desenvolvimento das Ciências e da Tecnologia
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献