Author:
Wang Lan-Hsin,Baker Nicholas E.
Abstract
Abstract
The fundamental roles for the Salvador–Warts–Hippo (SWH) pathway are widely characterized in growth regulation and organ size control. However, the function of SWH pathway is less known in cell fate determination. Here we uncover a novel role of the SWH signaling pathway in determination of cell fate during neural precursor (sensory organ precursor, SOP) development. Inactivation of the SWH pathway in SOP of the wing imaginal discs affects caspase-dependent bristle patterning in an apoptosis-independent process. Such nonapoptotic functions of caspases have been implicated in inflammation, proliferation, cellular remodeling, and cell fate determination. Our data indicate an effect on the Wingless (Wg)/Wnt pathway. Previously, caspases were proposed to cleave and activate a negative regulator of Wg/Wnt signaling, Shaggy (Sgg)/GSK3β. Surprisingly, we found that a noncleavable form of Sgg encoded from the endogenous locus after CRISPR-Cas9 modification supported almost normal bristle patterning, indicating that Sgg might not be the main target of the caspase-dependent nonapoptotic process. Collectively, our results outline a new function of SWH signaling that crosstalks to caspase-dependent nonapoptotic signaling and Wg/Wnt signaling in neural precursor development, which might be implicated in neuronal pathogenesis.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献