miR-16 integrates signal pathways in myofibroblasts: determinant of cell fate necessary for fibrosis resolution

Author:

Pan Qin,Guo Can-Jie,Xu Qing-YangORCID,Wang Jin-Zhi,Li Han,Fang Chun-Hua

Abstract

AbstractLiver fibrosis is characterized by the transdifferentiation of hepatic stellate cells (HSCs) to myofibroblasts and poor response to treatment. This can be attributed to the myofibroblast-specific resistance to phenotype reversal. In this study, we complemented miR-16 into miR-16-deficient myofibroblasts and analyzed the global role of miR-16 using transcriptome profiling and generating a pathway-based action model underlying transcriptomic regulation. Phenotypic analysis of myofibroblasts and fibrogenic characterization were used to understand the effect of miR-16 on phenotypic remodeling of myofibroblasts. miR-16 expression altered the transcriptome of myofibroblasts to resemble that of HSCs. Simultaneous targeting of Smad2 and Wnt3a, etc. by miR-16 integrated signaling pathways of TGF-β and Wnt, etc., which underlay the comprehensive regulation of transcriptome. The synergistic effect of miR-16 on the signaling pathways abolished the phenotypic characteristics of myofibroblasts, including collagen production and inhibition of adipogenesis. In vivo, myofibroblast-specific expression of miR-16 not only eliminated mesenchymal cells with myofibroblast characteristics but also restored the phenotype of HSCs in perisinusoidal space. This phenotypic remodeling resolved liver fibrosis induced by chronic wound healing. Therefore, miR-16 may integrate signaling pathways crucial for the fate determination of myofibroblasts. Its global effect induces the reversal of HSC-to-myofibroblast transdifferentiation and, subsequently, the resolution of fibrogenesis. Taken together, these findings highlight the potential of miR-16 as a promising therapeutic target for liver fibrosis.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3