Abstract
AbstractGlioblastoma (GBM) is one of the most malignant types of brain cancer. Tumor treating fields (TTFields) is the up-to-date treatment for GBM. However, its molecular mechanism requires additional investigation. Herein, a novel TTFields system was developed (CL-301A) and its efficiency in suppressing GBM cell proliferation and inducing cell apoptosis was demonstrated. Through the whole proteomic and transcriptomic analyses, a multitude of differentially expressed proteins (1243), mRNAs (4191), miRtNAs (47), lncRNAs (4286), and circRNAs (13,903) were identified. Bioinformatic analysis indicated that TTFields mainly affected nuclear proteins and interrupt cell mitosis-related events. Moreover, the inhibition of autophagy could significantly enhance the anti-GBM activity of TTFields. And CDK2-AS1 might be a target of TTFields to mediate cell cycle arrest via regulating CDK2 mRNA stability. This study provided valuable resources for understanding the mechanism of TTFields, which might further assist the investigation of TTFields in GBM treatment.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
China Postdoctoral Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献