The HIV protease inhibitor Saquinavir attenuates sepsis-induced acute lung injury and promotes M2 macrophage polarization via targeting matrix metalloproteinase-9

Author:

Tong YaoORCID,Yu Zhuang,Chen Zhixia,Zhang Renlingzi,Ding Xibing,Yang Xiaohu,Niu Xiaoyin,Li Mengzhu,Zhang Lingling,Billiar Timothy R.ORCID,Pitt Bruce R.,Li Quan

Abstract

AbstractImbalance of macrophage polarization plays an indispensable role in acute lung injury (ALI), which is considered as a promising target. Matrix metalloproteinase-9 (MMP-9) is expressed in the macrophage, and has a pivotal role in secreting inflammatory cytokines. We reported that saquinavir (SQV), a first-generation human immunodeficiency virus-protease inhibitor, restricted exaggerated inflammatory response. However, whether MMP-9 could regulate macrophage polarization and inhibit by SQV is still unknown. We focused on the important role of macrophage polarization in CLP (cecal ligation puncture)-mediated ALI and determined the ability of SQV to maintain M2 over M1 phenotype partially through the inhibition of MMP-9. We also performed a limited clinical study to determine if MMP-9 is a biomarker of sepsis. Lipopolysaccharide (LPS) increased MMP-9 expression and recombinant MMP-9 (rMMP-9) exacerbated LPS-mediated M1 switching. Small interfering RNA to MMP-9 inhibited LPS-mediated M1 phenotype and SQV inhibition of this switching was reversed with rMMP-9, suggesting an important role for MMP-9 in mediating LPS-induced M1 phenotype. MMP-9 messenger RNA levels in peripheral blood mononuclear cells of these 14 patients correlated with their clinical assessment. There was a significant dose-dependent decrease in mortality and ALI after CLP with SQV. SQV significantly inhibited LPS-mediated M1 phenotype and increased M2 phenotype in cultured RAW 264.7 and primary murine bone marrow-derived macrophages as well as lung macrophages from CLP-treated mice. This study supports an important role for MMP-9 in macrophage phenotypic switching and suggests that SQV-mediated inhibition of MMP-9 may be involved in suppressing ALI during systemic sepsis.

Funder

National Natural Science Foundation of China

Shanghai Sailing Program

Jiangxi Natural Science Foundation Project

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3