Mesenchymal stem cells protect against ferroptosis via exosome-mediated stabilization of SLC7A11 in acute liver injury

Author:

Lin Feiyan,Chen Wenyi,Zhou Jiahang,Zhu Jiaqi,Yao Qigu,Feng Bing,Feng Xudong,Shi Xiaowei,Pan Qiaoling,Yu Jiong,Li Lanjuan,Cao HongcuiORCID

Abstract

AbstractMesenchymal stem cells (MSCs) have attracted interest for their potential to alleviate liver injury. Here, the protective effect of MSCs on carbon tetrachloride (CCl4)-induced acute liver injury (ALI) was investigated. In this study, we illustrated a novel mechanism that ferroptosis, a newly recognized form of regulated cell death, contributed to CCl4-induced ALI. Subsequently, based on the in vitro and in vivo evidence that MSCs and MSC-derived exosomes (MSC-Exo) treatment achieved pathological remission and inhibited the production of lipid peroxidation, we proposed an MSC-based therapy for CCl4-induced ALI. More intriguingly, treatment with MSCs and MSC-Exo downregulated the mRNA level of prostaglandin-endoperoxide synthase 2 (Ptgs2) and lipoxygenases (LOXs) while it restored the protein level of SLC7A11 in primary hepatocytes and mouse liver, indicating that the inhibition of ferroptosis partly accounted for the protective effect of MSCs and MSC-Exo on ALI. We further revealed that MSC-Exo-induced expression of SLC7A11 protein was accompanied by increasing of CD44 and OTUB1. The aberrant expression of ubiquitinated SLC7A11 triggered by CCl4 could be rescued with OTUB1-mediated deubiquitination, thus strengthening SLC7A11 stability and thereby leading to the activation of system XC to prevent CCl4-induced hepatocyte ferroptosis. In conclusion, we showed that MSC-Exo had a protective role against ferroptosis by maintaining SLC7A11 function, thus proposing a novel therapeutic strategy for ferroptosis-induced ALI.

Funder

National Natural Science Foundation of China

Stem Cell and Translational Research from National Key Research and Development Program of Chin

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3