Abstract
AbstractHepatocellular carcinoma (HCC) is one of the most severe malignancies with increasing incidence and limited treatment options. Typically, HCC develops during a multistep process involving chronic liver inflammation and liver fibrosis. The latter is characterized by the accumulation of extracellular matrix produced by Hepatic Stellate Cells (HSCs). This process involves cell cycle re-entry and proliferation of normally quiescent HSCs in an ordered sequence that is highly regulated by cyclins and associated cyclin-dependent kinases (CDKs) such as the Cyclin E1 (CCNE1)/CDK2 kinase complex. In the present study, we examined the role of Cyclin E1 (Ccne1) and Cdk2 genes in HSCs for liver fibrogenesis and hepatocarcinogenesis. To this end, we generated conditional knockout mice lacking Ccne1 or Cdk2 specifically in HSCs (Ccne1∆HSC or Cdk2∆HSC). Ccne1∆HSC mice showed significantly reduced liver fibrosis formation and attenuated HSC activation in the carbon tetrachloride (CCl4) model. In a combined model of fibrosis-driven hepatocarcinogenesis, Ccne1∆HSC mice revealed decreased HSC activation even after long-term observation and substantially reduced tumor load in the liver when compared to wild-type controls. Importantly, the deletion of Cdk2 in HSCs also resulted in attenuated liver fibrosis after chronic CCl4 treatment. Single-cell RNA sequencing revealed that only a small fraction of HSCs expressed Ccne1/Cdk2 at a distinct time point after CCl4 treatment. In summary, we provide evidence that Ccne1 expression in a small population of HSCs is sufficient to trigger extensive liver fibrosis and hepatocarcinogenesis in a Cdk2-dependent manner. Thus, HSC-specific targeting of Ccne1 or Cdk2 in patients with liver fibrosis and high risk for HCC development could be therapeutically beneficial.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Reference38 articles.
1. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Prim. 2021;7:6.
2. Weiskirchen R, Tacke F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg Nutr. 2014;3:344–63.
3. Kocabayoglu P, Lade A, Lee YA, Dragomir AC, Sun X, Fiel MI, et al. beta-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. J Hepatol. 2015;63:141–7.
4. Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. 2021;18:151–66.
5. Sauer K, Lehner CF. The role of cyclin E in the regulation of entry into S phase. Prog Cell Cycle Res. 1995;1:125–39.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献