Y772 phosphorylation of EphA2 is responsible for EphA2-dependent NPC nasopharyngeal carcinoma growth by Shp2/Erk-1/2 signaling pathway

Author:

Xiang Yi-Ping,Xiao Ta,Li Qi-Guang,Lu Shan-Shan,Zhu Wei,Liu Yun-Ya,Qiu Jie-Ya,Song Zheng-Hui,Huang Wei,Yi Hong,Tang Yao-Yun,Xiao Zhi-Qiang

Abstract

AbstractEphA2 is an important oncogenic protein and emerging drug target, but the oncogenic role and mechanism of ligand-independent phosphorylation of EphA2 at tyrosine 772 (pY772-EphA2) is unclear. In this study, we established nasopharyngeal carcinoma (NPC) cell lines with stable expression of exogenous EphA2 and EphA2-Y772A (phosphorylation inactivation) using endogenous EphA2-knockdown cells, and observed that pY772A EphA2 was responsible for EphA2-promoting NPC cell proliferation and anchorage-independent and in vivo growth in mice. Mechanistically, EphA2-Y772A mediated EphA2-activating Shp2/Erk-1/2 signaling pathway in the NPC cells, and Gab1 (Grb2-associated binder 1) and Grb2 (growth factor receptor-bound protein 2) were involved in pY772-EphA2 activating this signaling pathway. Our results further showed that Shp2/Erk-1/2 signaling mediated pY772-EphA2-promoting NPC cell proliferation and anchorage-independent growth. Moreover, we observed that EphA2 tyrosine kinase inhibitor ALW-II-41-27 inhibited pY772-EphA2 and EphA2-Y772A decreased the inhibitory effect of ALW-II-41-27 on NPC cell proliferation. Collectively, our results demonstrate that pY772-EphA2 is responsible for EphA2-dependent NPC cell growth in vitro and in vivo by activating Shp2/Erk-1/2 signaling pathway, and is a pharmacologic target of ALW-II-41-27, suggesting that pY772-EphA2 can serve as a therapeutic target in NPC and perhaps in other cancers.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hainan Province

Shenzhen Science and Technology Innovation Commission

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3