Glioblastoma upregulates SUMOylation of hnRNP A2/B1 to eliminate the tumor suppressor miR-204-3p, accelerating angiogenesis under hypoxia
-
Published:2023-02-21
Issue:2
Volume:14
Page:
-
ISSN:2041-4889
-
Container-title:Cell Death & Disease
-
language:en
-
Short-container-title:Cell Death Dis
Author:
Guo Qindong, Fan Yang, Wang Qingtong, Li Boyan, Qiu Wei, Qi YanhuaORCID, Pan Ziwen, Zhang Shouji, Zhao Shulin, Yang Kehui, Xu Hao, Li Ming, Gao Zijie, Xu JianyeORCID, Wang Huizhi, Wang ShaoboORCID, Tang Qilin, Qiu Jiawei, Guo Xing, Deng Lin, Zhang Ping, Zhao Rongrong, Xue HaoORCID, Wang Chengwei, Li GangORCID
Abstract
Abstract
Glioma is the most common malignant tumor of the central nervous system in adults. The tumor microenvironment (TME) is related to poor prognosis in glioma patients. Glioma cells could sort miRNA into exosomes to modify TME. And hypoxia played an important role in this sorting process, but the mechanism is not clear yet. Our study was to find miRNAs sorted into glioma exosomes and reveal the sorting process. Sequencing analysis of glioma patients cerebrospinal fluid (CSF) and tissue showed that miR-204-3p tends to be sorted into exosomes. miR-204-3p suppressed glioma proliferation through the CACNA1C/MAPK pathway. hnRNP A2/B1 can accelerate exosome sorting of miR-204-3p by binding a specific sequence. Hypoxia plays an important role in exosome sorting of miR-204-3p. Hypoxia can upregulate miR-204-3p by upregulating the translation factor SOX9. Hypoxia promotes the transfer of hnRNP A2/B1 to the cytoplasm by upregulating SUMOylation of hnRNP A2/B1 to eliminate miR-204-3p. Exosomal miR-204-3p promoted tube formation of vascular endothelial cells through the ATXN1/STAT3 pathway. The SUMOylation inhibitor TAK-981 can inhibit the exosome-sorting process of miR-204-3p to inhibit tumor growth and angiogenesis. This study revealed that glioma cells can eliminate the suppressor miR-204-3p to accelerate angiogenesis under hypoxia by upregulating SUMOylation. The SUMOylation inhibitor TAK-981 could be a potential drug for glioma. This study revealed that glioma cells can eliminate the suppressor miR-204-3p to accelerate angiogenesis under hypoxia by upregulating SUMOylation. The SUMOylation inhibitor TAK-981 could be a potential drug for glioma.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Reference38 articles.
1. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncol. 2021;23:1231–51. 2. Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro-Oncol. 2021;23:iii1–105. 3. Andersen B, Faust Akl C, Wheeler M, Chiocca E, Reardon D, Quintana FJNrC, et al. Glial and myeloid heterogeneity in the brain tumour microenvironment. 2021;21:786–802. 4. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–83. 5. Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|