Dual inhibition of thioredoxin reductase and proteasome is required for auranofin-induced paraptosis in breast cancer cells

Author:

Seo Min Ji,Kim In YoungORCID,Lee Dong Min,Park Yeon Jung,Cho Mi-Young,Jin Hyo JoonORCID,Choi Kyeong SookORCID

Abstract

AbstractAuranofin (AF), a gold (I)-containing phosphine compound, is being investigated for oncological application as a repurposed drug. We show here that 4~5 µM AF induces paraptosis, a non-apoptotic cell death mode characterized by dilation of the endoplasmic reticulum (ER) and mitochondria, in breast cancer cells. Although the covalent inhibition of thioredoxin reductase (TrxR), an enzyme that critically controls intracellular redox homeostasis, is considered the primary mechanism of AF’s anticancer activity, knockdown of TrxR1 did not induce paraptosis. Instead, both TrxR1 knockdown plus the proteasome inhibitor (PI), bortezomib (Bz), and 2 μM AF plus Bz induced paraptosis, thereby mimicking the effect of 5 μM AF. These results suggest that the paraptosis induced by 5 μM AF requires the inhibition of both TrxR1 and proteasome. We found that TrxR1 knockdown/Bz or subtoxic doses of AF and Bz induced paraptosis selectively in breast cancer cells, sparing non-transformed MCF10A cells, whereas 4~5 μM AF killed both cancer and MCF10A cells. GSH depletion was found to be more critical than ROS generation for the paraptosis induced by dual TrxR1/proteasome inhibition. In this process, the ATF4/CHAC1 (glutathione-specific gamma-glutamylcyclotransferase 1) axis leads to GSH degradation, contributing to proteotoxic stress possibly due to the accumulation of misfolded thiol-containing proteins. These results suggest that the paraptosis-inducing strategy of AF plus a PI may provide an effective therapeutic strategy against pro-apoptotic therapy-resistant cancers and reduce the potential side effects associated with high-dose AF.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3