PTRF-IL33-ZBP1 signaling mediating macrophage necroptosis contributes to HDM-induced airway inflammation

Author:

Du JuanORCID,Liu YahuiORCID,Lan Gelei,Zhou Yao,Ni Yingmeng,Liao Kai,Zheng Fang,Cheng Qijian,Shi Guochao,Su XiaoORCID

Abstract

AbstractPolymerase 1 and transcript release factor (PTRF, encoding by Cavin-1) regulates interleukin 33 (IL-33) release, which is implicated in asthma development. Z-DNA binding protein 1 (ZBP1)-sensing Z-RNAs induces necroptosis which causes inflammatory diseases. House dust mite (HDM) is the major source of allergen in house dust and is strongly associated with the development of asthma. Whether PTRF via IL-33 and ZBP1 mediates HDM-induced macrophage necroptosis and airway inflammation remains unclear. Here, we found that deficiency of PTRF could reduce lung IL-33, ZBP1, phosphor-receptor-interacting protein kinase 3 (p-RIPK3), and phosphor-mixed lineage kinase domain-like (p-MLKL) (necroptosis executioner), and airway inflammation in an HDM-induced asthma mouse model. In HDM-treated macrophages, ZBP1, p-RIPK3, and p-MLKL levels were markedly increased, and these changes were reversed by deletion of Cavin-1. Deletion of Il33 also reduced expression of ZBP1, p-RIPK3, and p-MLKL in HDM-challenged lungs. Moreover, IL-33 synergizing with HDM boosted expression of ZBP1, p-RIPK3, and p-MLKL in macrophages. In bronchial epithelial cells rather than macrophages and vascular endothelial cells, PTRF positively regulates IL-33 expression. Therefore, we conclude that PTRF mediates HDM-induced macrophage ZBP1/necroptosis and airway inflammation, and this effect could be boosted by bronchial epithelial cell-derived IL-33. Our findings suggest that PTRF-IL33-ZBP1 signaling pathway might be a promising target for dampening airway inflammation.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3