GBA1-dependent membrane glucosylceramide reprogramming promotes liver cancer metastasis via activation of the Wnt/β-catenin signalling pathway

Author:

Qiu Zhidong,Wang Xuehong,Yang Zebin,Liao Sicong,Dong Wei,Sun Tian,Wu Huixian,Zhang Qinqin,Pan Zhixiong,Lam Sin Man,Shui GuanghouORCID,Jin JunfeiORCID

Abstract

AbstractThe effect of glucosylceramide (GlcCer) reprogramming on liver cancer metastasis remains poorly understood. In this study, we demonstrated that the protein expression of GBA1, which catalyses the conversion of GlcCer to ceramide, was downregulated in liver cancer tissue. A clinical relevance analysis revealed that low expression of GBA1 was associated with the metastatic potential of liver cancer cells. Furthermore, loss- and gain-of-function studies confirmed that low expression of GBA1 promoted metastasis of liver cancer both in vitro and in vivo. Mechanistic studies indicated that low expression of GBA1 enhanced the metastatic ability of liver cancer by promoting the epithelial-mesenchymal transition (EMT), in which Wnt signalling pathway is involved. In the plasma membrane (PM), GBA1-dependent GlcCer reprogramming increased LRP6 location in the PM leading to an interaction between GlcCer and LRP6, subsequently promoting LRP6 phosphorylation at Ser1490, and finally activating the Wnt/β-catenin signalling pathway. To our knowledge, this is the first time to be found that GlcCer interacted with a protein. In addition, the results of mass spectrometry indicated that GlcCer d18:1/18:0 was the most notably increased studied species in the PM when GBA1 was downregulated, suggesting that GlcCer d18:1/18:0 may be the major functional lipid that promotes GBA1-dependent liver cancer metastasis. Thus, GBA1-mediated GlcCer reprogramming in the PM promotes metastasis of liver cancer via activation of the Wnt/β-catenin signalling pathway, upregulation of GBA1 may be a potential therapeutic strategy to combat liver cancer metastasis.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3