HP1a-mediated heterochromatin formation inhibits high dietary sugar-induced tumor progression

Author:

Chang Che-Wei,Shen Yu-Chia,Yan Shian-JangORCID

Abstract

AbstractHigh dietary sugar (HDS) is a modern dietary concern that involves excessive consumption of carbohydrates and added sugars, and increases the risk of metabolic disorders and associated cancers. However, epigenetic mechanisms by which HDS induces tumor progression remain unclear. Here, we investigate the role of heterochromatin, an important yet poorly understood part of the epigenome, in HDS-induced tumor progression of Drosophila Ras/Src and Ras/scrib tumor systems. We found that increased heterochromatin formation with overexpression of heterochromatin protein 1a (HP1a), specifically in tumor cells, not only decreases HDS-induced tumor growth/burden but also drastically improves survival of Drosophila with HDS and Ras/Src or Ras/scrib tumors. Moreover, HDS reduces heterochromatin levels in tumor cells. Mechanistically, we demonstrated that increased heterochromatin formation decreases wingless (wg) and Hippo (Hpo) signaling, thereby promoting apoptosis, via inhibition of Yorkie (Yki) nuclear accumulation and upregulation of apoptotic genes, and reduces DNA damage in tumor cells under HDS. Taken together, our work identified a novel epigenetic mechanism by which HP1a-mediated heterochromatin formation suppresses HDS-induced tumor progression likely by decreasing wingless and Hippo signaling, increasing apoptosis, and maintaining genome stability. Our model explains that the molecular, cellular, and organismal aspects of HDS-aggravated tumor progression are dependent on heterochromatin formation, and highlights heterochromatin as a therapeutic target for cancers associated with HDS-induced metabolic disorders.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3