RETRACTED ARTICLE: Dual roles of miR-374a by modulated c-Jun respectively targets CCND1-inducing PI3K/AKT signal and PTEN-suppressing Wnt/β-catenin signaling in non-small-cell lung cancer

Author:

Zhao Mengyang,Xu Ping,Liu Zhen,Zhen Yan,Chen Yiyu,Liu Yiyi,Fu Qiaofen,Deng Xiaojie,Liang Zixi,Li Yonghao,Lin Xian,Fang Weiyi

Abstract

AbstractMiR-374a appears to play a complex role in non-small-cell lung cancer (NSCLC). Here, we demonstrate a dual role for miR-374a in NSCLC pathogenesis. The effects and modulatory mechanisms of miR-374a on cell growth, migration, invasion, and in vivo tumorigenesis and metastasis in nude mice were also analyzed. The expression of miR-374a was examined in NSCLC and non-cancerous lung tissues by quantitative real-time reverse transcription-PCR (qRT-PCR), and in situ hybridization, respectively. miR-374a directly targets CCND1 and inactivates PI3K/AKT and Ras-mediated cell cycle signalings, as well as epithelial–mesenchymal transition (EMT). This not only dramatically suppressed cell growth, migration, invasion,and metastasis, but also elevated A549 and pc-9 NSCLC cell sensitivity to cisplatin (DDP) while increasing survival time of tumor-bearing mice. Interestingly, miR-374a serves an inverse function in SPCA-1 and H1975 NSCLC cells by directly targeting PTEN to activate Wnt/β-catenin and Ras signalings and its downstream cascade signals. Surprisingly, transcription factor c-Jun bound to the promoter region of human miR-374a and suppressed miR-374a in A549 and pc-9 cells while inducing it in SPCA-1 and H1975 cells. Increased levels of miR-374a appeared to serve a protective role by targeting CCND1 in early-stage NSCLC (Stages I and II). Inversely, increased miR-374a was an unfavorable factor when targeting PTEN in more advanced staged NSCLC patients. Our studies are the first to demonstrate that miR-374a plays divergent roles in NSCLC pathogenesis at different stages of the disease and implicate the potential application of miR-374a targeting for cancer therapy.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3