Enhancer of zeste homolog 2 promotes renal fibrosis after acute kidney injury by inducing epithelial-mesenchymal transition and activation of M2 macrophage polarization

Author:

Zhou Xun,Chen Hui,Hu Yan,Ma Xiaoyan,Li Jinqing,Shi Yingfeng,Tao Min,Wang Yi,Zhong Qin,Yan Danying,Zhuang Shougang,Liu NaORCID

Abstract

AbstractLong-term follow-up data indicates that 1/4 patients with acute kidney injury (AKI) will develop to chronic kidney disease (CKD). Our previous studies have demonstrated that enhancer of zeste homolog 2 (EZH2) played an important role in AKI and CKD. However, the role and mechanisms of EZH2 in AKI-to-CKD transition are still unclear. Here, we demonstrated EZH2 and H3K27me3 highly upregulated in kidney from patients with ANCA-associated glomerulonephritis, and expressed positively with fibrotic lesion and negatively with renal function. Conditional EZH2 deletion or pharmacological inhibition with 3-DZNeP significantly improved renal function and attenuated pathological lesion in ischemia/reperfusion (I/R) or folic acid (FA) mice models (two models of AKI-to-CKD transition). Mechanistically, we used CUT & Tag technology to verify that EZH2 binding to the PTEN promoter and regulating its transcription, thus regulating its downstream signaling pathways. Genetic or pharmacological depletion of EZH2 upregulated PTEN expression and suppressed the phosphorylation of EGFR and its downstream signaling ERK1/2 and STAT3, consequently alleviating the partial epithelial-mesenchymal transition (EMT), G2/M arrest, and the aberrant secretion of profibrogenic and proinflammatory factors in vivo and vitro experiments. In addition, EZH2 promoted the EMT program induced loss of renal tubular epithelial cell transporters (OAT1, ATPase, and AQP1), and blockade of EZH2 prevented it. We further co-cultured macrophages with the medium of human renal tubular epithelial cells treated with H2O2 and found macrophages transferred to M2 phenotype, and EZH2 could regulate M2 macrophage polarization through STAT6 and PI3K/AKT pathways. These results were further verified in two mice models. Thus, targeted inhibition of EZH2 might be a novel therapy for ameliorating renal fibrosis after acute kidney injury by counteracting partial EMT and blockade of M2 macrophage polarization.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3