Abstract
AbstractAs important modulators in multiple physiological processes, microRNAs (miRNAs) have been reported in various malignant tumors, including breast cancer. The current study investigated the function of a new tumor suppressor microRNA, miR-488, and its molecular mechanism of metastasis in breast cancers. CCK8 and transwell assays revealed that the upregulated miR-488 level significantly inhibited the proliferation and migration of breast cancer cells. As a potential downstream gene, the mRNA and protein level of FSCN1 was suppressed by increased miR-488 and vice versa. Luciferase assay showed that miR-488 directly bind to the 3′UTR of FSCN1 and suppressed the translation process of FSCN1. The promoter region of miR-488 was directly bound by Notch3 and promoted the expression of miR-488 transcriptionally. Immunohistochemistry results revealed that in patients with breast cancer, the expression of Notch3 and were negatively correlated with the FSCN1 levels significantly. Therefore, the current finding predicted miR-488 as a tumor suppressor molecule in breast cancer, and demonstrated that Notch3/miR-488/FSCN1 axis is established and involved in regulating the metastasis of breast cancers, providing novel therapeutic targets for patients with breast cancers.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Reference28 articles.
1. Anastasiadi, Z., Lianos, G. D., Ignatiadou, E., Harissis, H. V. & Mitsis, M. Breast cancer in young women: an overview. Updates Surg. 69, 313–317 (2017).
2. Peart, O. Metastatic Breast cancer. Radio. Technol. 88, 519M–539M (2017).
3. Bertozzi, N., Pesce, M., Santi, P. L. & Raposio, E. Oncoplastic breast surgery: comprehensive review. Eur. Rev. Med. Pharm. Sci. 21, 2572–2585 (2017).
4. Sikand, K., Slaibi, J. E., Singh, R., Slane, S. D. & Shukla, G. C. miR 488* inhibits androgen receptor expression in prostate carcinoma cells. Int J. Cancer 129, 810–819 (2011).
5. Fang, C. et al. MiR-488 inhibits proliferation and cisplatin sensibility in non-small-cell lung cancer (NSCLC) cells by activating the eIF3a-mediated NER signaling pathway. Sci. Rep. 7, 40384 (2017).
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献