BIK drives an aggressive breast cancer phenotype through sublethal apoptosis and predicts poor prognosis of ER-positive breast cancer

Author:

Pandya Vrajesh,Githaka John Maringa,Patel Namrata,Veldhoen RichardORCID,Hugh Judith,Damaraju Sambasivarao,McMullen Todd,Mackey John,Goping Ing Swie

Abstract

AbstractApoptosis is fundamental to normal animal development and is the target for many anticancer therapies. Recent studies have explored the consequences of “failed apoptosis” where the apoptotic program is initiated but does not go to completion and does not cause cell death. Nevertheless, this failed apoptosis induces DNA double-strand breaks generating mutations that facilitate tumorigenesis. Whether failed apoptosis is relevant to clinical disease is unknown. BCL-2 interacting killer (BIK) is a stress-induced BH3-only protein that stimulates apoptosis in response to hormone and growth factor deprivation, hypoxia, and genomic stress. It was unclear whether BIK promotes or suppresses tumor survival within the context of breast cancer. We investigated this and show that BIK induces failed apoptosis with limited caspase activation and genomic damage in the absence of extensive cell death. Surviving cells acquire aggressive phenotypes characterized by enrichment of cancer stem-like cells, increased motility and increased clonogenic survival. Furthermore, by examining six independent cohorts of patients (total n = 969), we discovered that high BIK mRNA and protein levels predicted clinical relapse of Estrogen receptor (ER)-positive cancers, which account for almost 70% of all breast cancers diagnosed but had no predictive value for hormone receptor-negative (triple-negative) patients. Thus, this study identifies BIK as a biomarker for tumor recurrence of ER-positive patients and provides a potential mechanism whereby failed apoptosis contributes to cancer aggression.

Funder

Alberta Cancer Foundation

Canadian Breast Cancer Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3