MicroRNA-93/STAT3 signalling pathway mediates retinal microglial activation and protects retinal ganglion cells in an acute ocular hypertension model

Author:

Wang Yayi,Chen Shida,Wang Jiawei,Liu Yaoming,Chen Yang,Wen Tao,Fang Xiuli,Vidal-Sanz Manuel,Jonas Jost B.ORCID,Zhang XiulanORCID

Abstract

AbstractGlaucoma is a common neurodegenerative disease and a leading cause of irreversible blindness worldwide. Retinal microglia-mediated neuroinflammation is involved in the process of optic nerve damage, but the mechanisms driving this microglial activation remain mostly elusive. Previous investigations reported that microRNAs are associated with the retinal microglial reaction and neural apoptosis. In the present study, we found that microRNA-93-5p (miR-93) played a key role in the reaction of retinal microglial cells in vivo and in vitro. The miR-93 level was significantly reduced in the retinae of rat acute ocular hypertension (AOH) models, which were accompanied by retinal microglial activation, overproduction of inflammatory cytokines, and subsequent retinal ganglion cells (RGCs) death, versus the retinae of controls. The induction of miR-93 overexpression significantly reduced microglial proliferation, migration and cytokine release, inhibited the expression of the target gene signal transducer and activator of transcription 3 (STAT3) and p-STAT3, and was associated with a reduced loss of RGCs. Treatment with a STAT3 inhibitor also decreased retinal microglial activation after AOH injury. Taken together, these results suggest that the miR-93/STAT3 pathway is directly related to the downregulation of retinal microglia-mediated neuro-inflammation and showed a neuroprotective effect. Regulating microglial activation through miR-93 may serve as a target for neuroprotective therapy in pathological ocular hypertension.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3