HucMSC-derived exosomes delivered BECN1 induces ferroptosis of hepatic stellate cells via regulating the xCT/GPX4 axis

Author:

Tan Youwen,Huang Yan,Mei Rong,Mao FeiORCID,Yang Dakai,Liu Jinwen,Xu Wenrong,Qian Hui,Yan YongminORCID

Abstract

AbstractActivated hepatic stellate cells (HSCs) are significant in liver fibrosis. Our past investigations have shown that human umbilical cord mesenchymal stem cells (hucMSCs) and their secreted exosomes (MSC-ex) could alleviate liver fibrosis via restraining HSCs activation. However, the mechanisms underlying the efficacy were not clear. Ferroptosis is a regulatory cell death caused by excessive lipid peroxidation, and it plays a vital role in the occurrence and development of liver fibrosis. In the present study, we aimed to study the proferroptosis effect and mechanism of MSC-ex in HSCs. MSC-ex were collected and purified from human umbilical cord MSCs. Proferroptosis effect of MSC-ex was examined in HSCs line LX-2 and CCl4 induced liver fibrosis in mice. Gene knockdown or overexpression approaches were used to investigate the biofactors in MSC-ex-mediated ferroptosis regulation. Results: MSC-ex could trigger HSCs ferroptosis by promoting ferroptosis-like cell death, ROS formation, mitochondrial dysfunction, Fe2+ release, and lipid peroxidation in human HSCs line LX-2. Glutathione peroxidase 4 (GPX4) is a crucial regulator of ferroptosis. We found that intravenous injection of MSC-ex significantly decreased glutathione peroxidase 4 (GPX4) expression in activated HSCs and collagen deposition in experimental mouse fibrotic livers. Mechanistically, MSC-ex derived BECN1 promoted HSCs ferroptosis by suppressing xCT-driven GPX4 expression. In addition, ferritinophagy and necroptosis might also play a role in MSC-ex-promoted LX-2 cell death. Knockdown of BECN1 in MSC diminished proferroptosis and anti-fibrosis effects of MSC-ex in LX-2 and fibrotic livers. MSC-ex may promote xCT/GPX4 mediated HSCs ferroptosis through the delivery of BECN1 and highlights BECN1 as a potential biofactor for alleviating liver fibrosis.

Funder

Jiangsu provincial key research and development program

National Natural Science Foundation of China

Six Talent Peaks Project in Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3