Inhibition of the long non-coding RNA NEAT1 protects cardiomyocytes from hypoxia in vitro via decreased pri-miRNA processing

Author:

Gidlöf OlofORCID,Bader Kerstin,Celik SelviORCID,Grossi Mario,Nakagawa Shinichi,Hirose Tetsuro,Metzler Bernhard,Olde Björn,Erlinge David

Abstract

AbstractWhile restoration of coronary blood flow to the ischemic heart is the most effective strategy for reducing infarct size, reperfusion injury represents a significant limiting factor on clinical outcomes in myocardial infarction patients. Ischemic preconditioning (IPC) has been shown to inhibit reperfusion injury and represents an attractive model for studying cardioprotective signal transduction pathways. Long non-coding RNAs (lncRNAs) are a structurally and functionally heterogenous class of RNA transcripts with unknown roles in IPC-induced cardioprotection. Through microarray-based expression profiling of 31,423 lncRNAs in cardiac tissue from IPC mice, we identified the nuclear transcript Neat1 to be rapidly and robustly decreased in response to IPC. siRNA-mediated knock down of Neat1 reduced apoptosis and necrosis in murine cardiomyocytes (CM) and human iPS-derived CMs in response to prolonged hypoxia and hypoxia-reoxygenation, assessed with Annexin V/propidium iodide-staining, a Caspase 3/7 activity assay, LDH release, and western blot for cleaved Caspase 3. Mechanistically, Neat1 was shown to regulate processing of pro-apoptotic microRNA-22 (miR-22) in murine and human CM nuclei using a luciferase reporter assay. Hypoxia-induced downregulation of Neat1 was shown to result in accumulation of unprocessed pri-miRNA and decreased availability of biologically active miRNA, including miR-22. Addition of exogenous synthetic miR-22 reversed the protective effect of Neat1 knock down in human iPS-CM. In conclusion, we have identified the nuclear lncRNA Neat1 as part of a conserved oxygen-sensitive feedback mechanism by regulation of miRNA processing and a potential target in cardioprotection.

Funder

Stiftelsen för Strategisk Forskning

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3