Plasma cell-free DNA 5-hydroxymethylcytosine and whole-genome sequencing signatures for early detection of esophageal cancer

Author:

Lu Di,Wu Xuanzhen,Wu WendyORCID,Wu Shuangxiu,Li Hui,Zhang YuhongORCID,Yan Xuebin,Zhai Jianxue,Dong Xiaoying,Feng Siyang,Zhang Xueying,Sun Fuming,Wang Shaobo,Cai KaicanORCID

Abstract

AbstractEsophageal cancer is a highly incidence and deadly disease with a poor prognosis, especially in developing countries. Owing to the lack of specific symptoms and early diagnostic biomarkers, most patients are diagnosed with advanced disease, leading to a 5-year survival rate of less than 15%. Early (n = 50) and middle-advanced (n = 50) esophageal squamous cell carcinoma (ESCC) patients, as well as 71 healthy individuals, underwent 5-hydroxymethylcytosine (5hmC) sequencing on their plasma cell-free DNA (cfDNA). A Northern Chinese cohort of cfDNA 5hmC dataset of 150 ESCC patients and 183 healthy individuals were downloaded for validation. A diagnostic model was developed using cfDNA 5hmC signatures and then improved by low-pass whole genome sequencing (WGS) features of cfDNA. Conserved cfDNA 5hmC modification motifs were observed in the two independent ESCC cohorts. The diagnostic model with 5hmC features achieved an AUC of 0.810 and 0.862 in the Southern and Northern cohorts, respectively, with sensitivities of 69.3–74.3% and specificities of 82.4–90.7%. The performance was well maintained in Stage I to Stage IV, with accuracy of 70–100%, but low in Stage 0, 33.3%. Low-pass WGS of cfDNA improved the AUC to 0.934 with a sensitivity of 82.4%, a specificity of 88.2%, and an accuracy of 84.3%, particularly significantly in Stage 0, with an accuracy up to 80%. 5hmC and WGS could efficiently differentiate very early ESCC from healthy individuals. These findings imply a non-invasive and convenient method for ESCC detection when clinical treatments are available and may eventually prolong survival.

Funder

Science and Technology Planning Project of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3