Abstract
AbstractPustular psoriasis (PP) is a chronic inflammatory disease associated with multiple complications, often with hyperthermia and hypoproteinemia, and its continued progression can be life-threatening. Toll-like receptor 7 (TLR7) induces dendritic cell (DC) production of inflammatory factors that exacerbate the inflammatory response in PP. A membrane-bound chemokine expressed on DCs, CXC motif chemokine ligand 16 (CXCL16) is overexpressed in PP lesions, and neutrophils express its receptor CXC chemokine receptor 6 (CXCR6). There are few studies on the PP immune microenvironment and it is unclear whether TLR7 and CXCL16 can be used as targets in PP therapy. Skin tissue (n = 5) and blood (n = 20) samples were collected from PP and healthy normal controls. The skin tissue transcriptome was analyzed to obtain the differentially expressed genes, and the immune microenvironment was deciphered using pathway enrichment. Tissue sequencing analysis indicated that TLR7, CXCL16, DCs, and neutrophils were involved in the PP process. The enzyme-linked immunosorbent assay, reverse transcription–PCR, and scoring table results demonstrated that TLR7 induced DC secretion of CXCL16, which enabled neutrophil activation of the secretion of the inflammatory factors interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-α). The co-culture of neutrophils with DCs treated with TLR7 inhibitor or TLR7 agonist demonstrated that TLR7 regulated neutrophil activation, migration, and apoptosis. We constructed imiquimod-induced psoriasis-like skin lesions in wild-type, Cd11c-Cre Myd88f/f, and Mrp8-Cre Cxcr6f/f mice. The mouse models suggested that TLR7 might influence DC release of CXCL16 and neutrophil proinflammatory effects by interfering with the myeloid differentiation primary response gene 88 (MyD88) signaling pathway. In conclusion, the TLR7–MyD88–DC–CXCL16 axis is an important mechanism that promotes neutrophil migration to PP skin lesions and stimulates the inflammatory response.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献