FAT10 protects against ischemia-induced ventricular arrhythmia by decreasing Nedd4-2/Nav1.5 complex formation

Author:

Liu Xiao,Ge Jin,Chen Chen,Shen Yang,Xie Jinyan,Zhu Xin,Liu Menglu,Hu Jinzhu,Chen Leifeng,Guo Linjuan,Zhou Qiongqiong,Yan Xia,Qiu Yuming,Wan Rong,Marian Ali J.,Hong Kui

Abstract

AbstractThe human leukocyte antigen F-associated transcript 10 (FAT10) is a member of the small ubiquitin-like protein family that binds to its target proteins and subjects them to degradation by the ubiquitin–proteasome system (UPS). In the heart, FAT10 plays a cardioprotective role and affects predisposition to cardiac arrhythmias after myocardial ischemia (MI). However, whether and how FAT10 influences cardiac arrhythmias is unknown. We investigated the role of FAT10 in regulating the sodium channel Nav1.5, a major regulator of cardiac arrhythmias. Fat10 was conditionally deleted in cardiac myocytes using Myh6-Cre and Fat10F/F mice (cFat10−/−). Compared with their wild-type littermates, cFat10−/− mice showed prolonged RR, PR, and corrected QT (QTc) intervals, were more likely to develop ventricular arrhythmia, and had increased mortality after MI. Patch-clamp studies showed that the peak Na+ current was reduced, and the late Na+ current was significantly augmented, resulting in a decreased action potential amplitude and delayed depolarization. Immunoblot and immunofluorescence analyses showed that the expression of the membrane protein Nav1.5 was decreased. Coimmunoprecipitation experiments demonstrated that FAT10 stabilized Nav1.5 expression by antagonizing Nav1.5 ubiquitination and degradation. Specifically, FAT10 bound to the lysine residues in the C-terminal fragments of Nav1.5 and decreased the binding of Nav1.5 to the Nedd4-2 protein, a ubiquitin E3 ligase, preventing degradation of the Nav1.5 protein. Collectively, our findings showed that deletion of the Fat10 in cardiac myocytes led to increased cardiac arrhythmias and increased mortality after MI. Thus, FAT10 protects against ischemia-induced ventricular arrhythmia by binding to Nav1.5 and preventing its Neddylation and degradation by the UPS after MI.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3