Drp1 depletion protects against ferroptotic cell death by preserving mitochondrial integrity and redox homeostasis

Author:

Tang Stephan,Fuß Anneke,Fattahi Zohreh,Culmsee CarstenORCID

Abstract

AbstractMitochondria are highly dynamic organelles which undergo constant fusion and fission as part of the mitochondrial quality control. In genetic diseases and age-related neurodegenerative disorders, altered mitochondrial fission-fusion dynamics have been linked to impaired mitochondrial quality control, disrupted organelle integrity and function, thereby promoting neural dysfunction and death. The key enzyme regulating mitochondrial fission is the GTPase Dynamin-related Protein 1 (Drp1), which is also considered as a key player in mitochondrial pathways of regulated cell death. In particular, increasing evidence suggests a role for impaired mitochondrial dynamics and integrity in ferroptosis, which is an iron-dependent oxidative cell death pathway with relevance in neurodegeneration. In this study, we demonstrate that CRISPR/Cas9-mediated genetic depletion of Drp1 exerted protective effects against oxidative cell death by ferroptosis through preserved mitochondrial integrity and maintained redox homeostasis. Knockout of Drp1 resulted in mitochondrial elongation, attenuated ferroptosis-mediated impairment of mitochondrial membrane potential, and stabilized iron trafficking and intracellular iron storage. In addition, Drp1 deficiency exerted metabolic effects, with reduced basal and maximal mitochondrial respiration and a metabolic shift towards glycolysis. These metabolic effects further alleviated the mitochondrial contribution to detrimental ROS production thereby significantly enhancing neural cell resilience against ferroptosis. Taken together, this study highlights the key role of Drp1 in mitochondrial pathways of ferroptosis and expose the regulator of mitochondrial dynamics as a potential therapeutic target in neurological diseases involving oxidative dysregulation.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3