LINC00978 promotes the progression of hepatocellular carcinoma by regulating EZH2-mediated silencing of p21 and E-cadherin expression

Author:

Xu Xueying,Gu Jianmei,Ding Xiaoge,Ge Guohong,Zang Xueyan,Ji Runbi,Shao Meng,Mao Zheying,Zhang Yu,Zhang Jiayin,Mao FeiORCID,Qian Hui,Xu Wenrong,Cai Hui,Wang Feng,Zhang Xu

Abstract

Abstract Long non-coding RNAs (lncRNAs) have been suggested as important regulators of cancer development and progression in hepatocellular carcinoma (HCC). Nevertheless, the clinical value and biological roles of LINC00978 in HCC remain unclear. In this study, we detected the expression of LINC00978 in tumor tissues and serum of HCC patients, examined the roles of LINC00978 in HCC progression and elucidated the underlying molecular mechanisms. We found that LINC00978 expression was upregulated in tumor tissues and serum of HCC patients. Higher serum levels of LINC00978 could distinguish HCC patients from hepatitis and liver cirrhosis patients and healthy controls. LINC00978 knockdown inhibited HCC cell proliferation, migration and invasion while promoted cell cycle arrest and apoptosis. Overexpression of LINC00978 led to the opposite effects. LINC00978 knockdown also inhibited HCC growth and metastasis in mouse tumor models. Mechanistically, LINC00978 bound to EZH2 and mediated its accumulation at the promoter region of p21 and E-cadherin genes, leading to the trimethylation of H27K3 and the inhibition of p21 and E-cadherin expression. Moreover, the simultaneous depletion of p21 and E-cadherin expression reversed the inhibitory effects of LINC00978 knockdown on HCC cell proliferation, migration, and invasion. Taken together, these findings suggest that LINC00978 promotes HCC progression by inhibiting p21 and E-cadherin expression via EZH2-mediated epigenetic silencing. LINC00978 may represent a novel biomarker for HCC diagnosis, prognosis, and therapy.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3