Neutralizing IL-16 enhances the efficacy of targeting Aurora-A therapy in colorectal cancer with high lymphocyte infiltration through restoring anti-tumor immunity

Author:

Yang Shiang-Jie,Chang Sheng-Tsung,Chang Kung-Chao,Lin Bo-Wen,Chang Kwang-Yu,Liu Yao-Wen,Lai Ming-Derg,Hung Liang-YiORCID

Abstract

AbstractCancer cells can evade immune elimination by activating immunosuppressive signaling pathways in the tumor microenvironment (TME). Targeting immunosuppressive signaling pathways to promote antitumor immunity has become an attractive strategy for cancer therapy. Aurora-A is a well-known oncoprotein that plays a critical role in tumor progression, and its inhibition is considered a promising strategy for treating cancers. However, targeting Aurora-A has not yet got a breakthrough in clinical trials. Recent reports have indicated that inhibition of oncoproteins may reduce antitumor immunity, but the role of tumor-intrinsic Aurora-A in regulating antitumor immunity remains unclear. In this study, we demonstrated that in tumors with high lymphocyte infiltration (hot tumors), higher tumor-intrinsic Aurora-A expression is associated with a better prognosis in CRC patients. Mechanically, tumor-intrinsic Aurora-A promotes the cytotoxic activity of CD8+ T cells in immune hot CRC via negatively regulating interleukin-16 (IL-16), and the upregulation of IL-16 may impair the therapeutic effect of Aurora-A inhibition. Consequently, combination treatment with IL-16 neutralization improves the therapeutic response to Aurora-A inhibitors in immune hot CRC tumors. Our study provides evidence that tumor-intrinsic Aurora-A contributes to anti-tumor immunity depending on the status of lymphocyte infiltration, highlighting the importance of considering this aspect in cancer therapy targeting Aurora-A. Importantly, our results suggest that combining Aurora-A inhibitors with IL-16-neutralizing antibodies may represent a novel and effective approach for cancer therapy, particularly in tumors with high levels of lymphocyte infiltration.

Funder

National Science and Technology Council grants reference number

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3