The MYB/miR-130a/NDRG2 axis modulates tumor proliferation and metastatic potential in salivary adenoid cystic carcinoma

Author:

Wang Yu,Zhang Chun-ye,Xia Rong-hui,Han Jing,Sun Bao,Sun Shu-yang,Li Jiang

Abstract

AbstractIncreasing evidence has emerged to suggest that N-myc downstream-regulated gene 2 (NDRG2) dysregulation participates in a number of tumor biological processes. However, the role of NDRG2 and miRNA-mediated NDRG2 regulation in salivary adenoid cystic carcinoma (SACC) progression remain unknown. Here, we determined that SACC tissues exhibited decreased level of NDRG2, which was associated with poorer rates of overall survival and distant metastasis-free survival. Silencing NDRG2 promoted SACC cell proliferation and metastasis both in vitro and in vivo. MiRNAs have been reported as vital regulators of NDRG2 expression. Based on micronome sequencing of three paired samples of SACC and normal salivary gland tissue and on an online database analysis, miR-130a was identified as a candidate miRNA that potentially regulates NDRG2. We demonstrated that the expression level of NDRG2 was dramatically reduced by exogenous miR-130a. Moreover, a luciferase assay further validated that miR-130a could degrade NDRG2 mRNA by targeting sites in the NDRG2 3′UTR. A rescue experiment suggested that NDRG2 expression could reverse the miR-130a-mediated promotion of cell proliferation and invasion. The expression of miR-130a has been reported to be regulated by certain transcription factors. In the preset study, we verified that the transcription factor MYB acted as the critical driver in SACC-upregulated miR-130a expression directly and induced NDRG2 downregulation in SACC tissues. Additionally, MYB/miR-130a activated the STAT3 and AKT pathways by downregulating NDRG2. These observations suggest that the MYB/miR-130a/NDRG2 axis, which modulates proliferation and metastasis in SACC, provides promising targets for the treatment of SACC.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3