Abstract
AbstractHypoxia is a classic feature of the tumor microenvironment that has profound effects on cancer progression and is tightly associated with poor prognosis. Long noncoding RNAs (lncRNAs), a component of the noncoding genome, have been increasingly investigated due to their diverse roles in tumorigenesis. Previously, a hypoxia-induced lncRNA, NDRG1-OT1, was identified in MCF-7 breast cancer cells using next-generation sequencing. However, the regulatory mechanisms of NDRG1-OT1 remain elusive. Therefore, the purpose of this study was to investigate the regulatory mechanisms and functional roles of NDRG1-OT1 in breast cancer cells. Expression profiling of NDRG1-OT1 revealed that it was upregulated under hypoxia in different breast cancer cells. Overexpression and knockdown of HIF-1α up- and downregulated NDRG1-OT1, respectively. Luciferase reporter assays and chromatin immunoprecipitation assays validated that HIF-1α transcriptionally activated NDRG1-OT1 by binding to its promoter (−1773 to −1769 and −647 to −643 bp). Next, to investigate whether NDRG1-OT1 could function as a miRNA sponge, results of in silico analysis, expression profiling of predicted miRNAs, and RNA immunoprecipitation assays indicated that NDRG1-OT1 could act as a miRNA sponge of miR-875-3p. In vitro and in vivo functional assays showed that NDRG1-OT1 could promote tumor growth and migration. Lastly, a small peptide (66 a.a.) translated from NDRG1-OT1 was identified. In summary, our findings revealed novel regulatory mechanisms of NDRG1-OT1 by HIF-1α and upon miR-875-3p. Also, NDRG1-OT1 promoted the malignancy of breast cancer cells and encoded a small peptide.
Funder
Ministry of Science and Technology, Taiwan
National Taiwan University [GTZ300]
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Reference65 articles.
1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.
2. Lech R, Przemyslaw O. Epidemiological models for breast cancer risk estimation. Ginekol Pol. 2011;82:451–4.
3. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.
4. Gulledge CJ, Dewhirst MW. Tumor oxygenation: a matter of supply and demand. Anticancer Res. 1996;16:741–9.
5. Hu M, Polyak K. Microenvironmental regulation of cancer development. Curr Opin Genet Dev. 2008;18:27–34.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献