HOPS/Tmub1 involvement in the NF-kB-mediated inflammatory response through the modulation of TRAF6

Author:

Bellet Marina Maria,Pieroni Stefania,Castelli Marilena,Piobbico Danilo,Fallarino Francesca,Romani LuiginaORCID,Della-Fazia Maria Agnese,Servillo GiuseppeORCID

Abstract

AbstractHOPS/Tmub1 is a ubiquitously expressed transmembrane ubiquitin-like protein that shuttles between nucleus and cytoplasm during cell cycle progression. HOPS causes cell cycle arrest in G0/G1 phase, an event associated to stabilization of p19Arf, an important tumor suppressor protein. Moreover, HOPS plays an important role in driving centrosomal assembly and maintenance, mitotic spindle proper organization, and ultimately a correct cell division. Recently, HOPS has been described as an important regulator of p53, which acts as modifier, stabilizing p53 half-life and playing a key role in p53 mediating apoptosis after DNA damage. NF-κB is a transcription factor with a central role in many cellular events, including inflammation and apoptosis. Our experiments demonstrate that the transcriptional activity of the p65/RelA NF-κB subunit is regulated by HOPS. Importantly, Hops−/− cells have remarkable alterations of pro-inflammatory responses. Specifically, we found that HOPS enhances NF-κB activation leading to increase transcription of inflammatory mediators, through the reduction of IκBα stability. Notably, this effect is mediated by a direct HOPS binding to the E3 ubiquitin ligase TRAF6, which lessens TRAF6 stability ultimately leading increased IKK complex activation. These findings uncover a previously unidentified function of HOPS/Tmub1 as a novel modulator of TRAF6, regulating inflammatory responses driven by activation of the NF-κB signaling pathway. The comprehension on how HOPS/Tmub1 takes part to the inflammatory processes in vivo and whether this function is important in the control of proliferation and tumorigenesis could establish the basis for the development of novel pharmacological strategies.

Funder

Ministero dell'Istruzione, dell'Università e della Ricerca

Fondazione Umberto Veronesi

Associazione Umbra Contro il Cancro

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3