miR-146a attenuates apoptosis and modulates autophagy by targeting TAF9b/P53 pathway in doxorubicin-induced cardiotoxicity

Author:

Pan Jian-An,Tang Yong,Yu Jian-Ying,Zhang Hui,Zhang Jun-Feng,Wang Chang-Qian,Gu JunORCID

Abstract

Abstract Clinical therapy of doxorubicin (DOX) is limited due to its cardiotoxicity. miR-146a was proved as a protective factor in many cardiovascular diseases, but its role in chronic DOX-induced cardiotoxicity is unclear. The objective of this study was to demonstrate the role of miR-146a in low-dose long-term DOX-induced cardiotoxicity. Experiments have shown that DOX intervention caused a dose-dependent and time-dependent cardiotoxicity involving the increased of apoptosis and dysregulation of autophagy. The cardiotoxicity was inhibited by overexpressed miR-146a and was more severe when miR-146a was downgraded. Further research proved that miR-146a targeted TATA-binding protein (TBP) associated factor 9b (TAF9b), a coactivator and stabilizer of P53, indirectly destroyed the stability of P53, thereby inhibiting apoptosis and improving autophagy in cardiomyocytes. Besides, miR-146a knockout mice were used for in vivo validation. In the DOX-induced model, miR-146a deficiency made it worse whether in cardiac function, cardiomyocyte apoptosis or basal level of autophagy, than wild-type. In conclusion, miR-146a partially reversed the DOX-induced cardiotoxicity by targeting TAF9b/P53 pathway to attenuate apoptosis and adjust autophagy levels.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3