Heterogeneity of tumor microenvironment is associated with clinical prognosis of non-clear cell renal cell carcinoma: a single-cell genomics study

Author:

Chen Wen-jin,Cao Hao,Cao Jian-wei,Zuo Li,Qu Fa-jun,Xu Da,Zhang Hao,Gong Hai-yi,Chen Jia-xin,Ye Jian-qing,Gan Si-shun,Zhou Wang,Zhu Da-weiORCID,Pan Xiu-WuORCID,Cui Xin-gangORCID

Abstract

AbstractNon-clear renal cell carcinomas (nccRCCs) are less frequent in kidney cancer with histopathological heterogeneity. A better understanding of the tumor biology of nccRCC can provide more effective treatment paradigms for different subtypes. To reveal the heterogeneity of tumor microenvironment (TME) in nccRCC, we performed 10x sing-cell genomics on tumor and normal tissues from patients with papillary renal cell carcinoma (pRCC), chromophobe RCC (chrRCC), collecting duct carcinoma (CDRCC) and sarcomatoid RCC (sarRCC). 15 tissue samples were finally included. 34561 cells were identified as 16 major cell clusters with 34 cell subtypes. Our study presented the sing-cell landscape for four types of nccRCC, and demonstrated that CD8+ T cells exhaustion, tumor-associated macrophages (TAMs) and sarcomatoid process were the pivotal factors in immunosuppression of nccRCC tissues and were closely correlated with poor prognosis. Abnormal metabolic patterns were present in both cancer cells and tumor-infiltrating stromal cells, such as fibroblasts and endothelial cells. Combined with CIBERSORTx tool, the expression data of bulk RNA-seq from TCGA were labeled with cell types of our sing-cell data. Calculation of the relative abundance of cell types revealed that greater proportion of exhausted CD8+ T cells, TAMs and sarRCC derived cells were correlated with poor prognosis in the cohort of 274 nccRCC patients. To the best of our knowledge, this is the first study that provides a more comprehensive sight about the heterogeneity and tumor biology of nccRCC, which may potentially facilitate the development of more effective therapies for nccRCC.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3