A spatiotemporal comparative analysis on tumor immune microenvironment characteristics between neoadjuvant chemotherapy and preoperative immunotherapy for ESCC

Author:

Zhou Zhengyang,Zhang HongdianORCID,Du Jian,Yang Jiayu,Pan Wen,Zhang Qiumo,Wang Huiya,Tang PengORCID,Ba Yi,Zhang Haiyang

Abstract

AbstractThe average five-year survival rate for esophageal cancer, a common malignant tumor of the digestive system, is barely 20%. The majority of esophageal squamous cell carcinoma (ESCC) patients had already progressed to a locally advanced or even advanced stage at initial diagnosis, making routine surgery ineffective. Chemotherapy and immunotherapy are important neoadjuvant treatments for ESCC, however, it remains unknown how treatment will affect the immunological microenvironment, especially at the spatial level. Here, we presented the TME characters of ESCC from the temporal and spatial dimensions using scRNA-seq and ST, investigated the changes of immune cell clusters in the TME under neoadjuvant chemotherapy and preoperative immunotherapy, and explored the potential mechanisms. It was found that compared with chemotherapy, immunotherapy combined with chemotherapy increased the level of T cell proliferation, partially restored the function of exhausted T cells, induced the expansion of specific exhausted CD8 T cells, increased the production of dendritic cells (DCs), and supported the immune hot microenvironment of the tumor. We also found that CD52 and ID3 have potential as biomarkers of ESCC. Particularly, CD52 may be served as a predictor of the efficacy to screen the advantaged population of different regimens. Through multiple pathways, CAF2 and CAF5’s antigen-presenting role affected the other fibroblast clusters, resulting in malignant transformation. We analyzed the immune microenvironment differences between the two regimens to provide a more thorough description of the ESCC microenvironment profile and serve as a foundation for customized neoadjuvant treatment of ESCC.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3