circPLIN2 promotes clear cell renal cell carcinoma progression by binding IGF2BP proteins and miR-199a-3p

Author:

Zhao Bin,Huang Cong,Pan Jie,Hu Hao,Liu Xiaojuan,Zhang Kaoyuan,Zhou Fenli,Shi Xin,Wu Jun,Yu Bo,Chen Xiaofan,Zhang WeiORCID

Abstract

AbstractRecent evidence has indicated that circular RNAs (circRNAs), a novel type of regulatory RNA, play important roles in the development and progression of various cancers. However, the potential regulatory roles and molecular mechanisms of circRNAs in clear cell renal cell carcinoma (ccRCC) remain largely unclear. Here, we explored circRNA expression profiles in 10 paired samples of RCC (including cancer tissues and surrounding tissues) from the Gene Expression Omnibus (GEO) datasets GSE124453 and GSE108735. We initially identified hsa_circ_0086457, designated circPLIN2, derived from exons 4 to 5 of the PLIN2 gene. We observed that circPLIN2 was preferentially located in the cytoplasm and was more stable than its linear counterpart PLIN2. circPLIN2 was significantly upregulated in ccRCC cells and tissues, and its overexpression was correlated with higher clinical stage and worse prognosis for ccRCC patients. Moreover, gain- and loss-of-function assays indicated that circPLIN2 promoted ccRCC cell proliferation, migration, and invasion in vitro and ccRCC tumor growth and metastasis in vivo. Mechanistically, circPLIN2 not only increased the stability of the c-Myc and MARCKSL1 mRNAs by binding to the KH domains of IGF2BP proteins but also competitively sponged miR-199a-3p to abolish the repressive effect of miR-199a-3p on ZEB1 expression, which ultimately resulted in ccRCC tumorigenesis and progression. Collectively, our results suggest that circPLIN2 may represent a promising diagnostic and prognostic biomarker and a potential therapeutic target for ccRCC patients.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Reference59 articles.

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: Cancer J Clin. 2020;70:7–30.

2. Shuch B, Amin A, Armstrong AJ, Eble JN, Ficarra V, Lopez-Beltran A, et al. Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity. Eur Urol. 2015;67:85–97.

3. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, et al. Renal cell carcinoma. Nat Rev Dis Prim. 2017;3:17009.

4. Gray RE, Harris GT. Renal cell carcinoma: diagnosis and management. Am Fam Physician. 2019;99:179–84.

5. Barata PC, Rini BI. Treatment of renal cell carcinoma: current status and future directions. CA: Cancer J Clin. 2017;67:507–24.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3