C/EBPα deficiency in podocytes aggravates podocyte senescence and kidney injury in aging mice

Author:

Zhang Liwen,Zhou Fangfang,Yu Xialian,Zhu Yufei,Zhou Ying,Liu Jian,Liu Yunzi,Ma Qingyang,Zhang Yuchao,Wang Weiming,Chen Nan

Abstract

Abstract Kidney aging leads to an increased incidence of end-stage renal disease (ESRD) in the elderly, and aging is a complex biological process controlled by signaling pathways and transcription factors. Podocyte senescence plays a central role in injury resulting from kidney aging. Here, we demonstrated the critical role of C/EBPα in podocyte senescence and kidney aging by generating a genetically modified mouse model of chronological aging in which C/EBPα was selectively deleted in podocytes and by overexpressing C/EBPα in cultured podocytes, in which premature senescence was induced by treatment with adriamycin. Moreover, we illuminated the mechanisms by which podocyte senescence causes tubular impairment by stimulating HK-2 cells with bovine serum albumin (BSA) and chloroquine. Our findings suggest that C/EBPα knockout in podocytes aggravates podocyte senescence through the AMPK/mTOR pathway, leading to glomerulosclerosis, and that subsequent albuminuria exacerbates the epithelial–mesenchymal transdifferentiation of senescent tubular cells by suppressing autophagy. These observations highlight the importance of C/EBPα as a new potential target in kidney aging.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3