Abstract
AbstractRecently, long non-coding RNAs (lncRNA) have been proven to regulate pancreatic cancer (PC) progression. We aimed to explore the pathogenesis of LINC00941 in PC regarding protein binding. By using PCR analysis, we found that LINC00941 was overexpressed in PC tissues and was higher in patients with liver metastasis than in patients without liver metastasis. In addition, high LINC00941 expression was associated with a poor prognosis. Functional experiments and mice models were respectively used to evaluate PC cell proliferation and migration in vitro and in vivo. The results suggested that LINC00941 overexpression promoted PC proliferation and metastasis. Subsequently, RNA pull-down, mass spectrometry (MS), and RNA-binding protein immunoprecipitation (RIP) were performed to identify LINC00941-interacting proteins. The results suggested that ANXA2 was the potential LINC00941-interacting protein. Nucleotides 500–1390 of LINC00941 could bind to the Annexin 1 domain of ANXA2. LINC00941-mediated malignant phenotype of PC was reversed by ANXA2 depletion. Co-immunoprecipitation (Co-IP) followed by MS was conducted to determine the potential interacting protein of LINC00941. The results illustrated that NEDD4L, an E3 ligase involved in ubiquitin-mediated protein degradation, bound to the Annexin 1 domain of ANXA2 and promoted its degradation. Mechanically, LINC00941 functioned as a decoy to bind to ANXA2 and suppressed its degradation by enclosing the domain that binds to NEDD4L. Eventually, LINC00941 upregulated ANXA2 and activated FAK/AKT signaling, increasing PC cell proliferation and metastasis. This study indicates that LINC00941 promotes PC proliferation and metastasis by binding ANXA2 and potentiating its stability, leading to the activation of FAK/AKT signaling. Our data demonstrate that LINC00941 may serve as a novel target for prognosis and therapy.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Reference48 articles.
1. Brouwer TP, de Vries NL, Abdelaal T, Krog RT, Li Z, Ruano D, et al. Local and systemic immune profiles of human pancreatic ductal adenocarcinoma revealed by single-cell mass cytometry. J Immunother Cancer. 2022;10:e004638.
2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.
3. Hackert T, Klaiber U, Hinz U, Strunk S, Loos M, Strobel O, et al. Portal vein resection in pancreatic cancer surgery: risk of thrombosis and radicality determine survival. Ann Surg. 2022;6:10–1097.
4. Wu H, Ou S, Zhang H, Huang R, Yu S, Zhao M, et al. Advances in biomarkers and techniques for pancreatic cancer diagnosis. Cancer Cell Int. 2022;22:220.
5. Force M, Park G, Chalikonda D, Roth C, Cohen M, Halegoua-DeMarzio D, et al. Alpha-fetoprotein (AFP) and AFP-L3 is most useful in detection of recurrence of hepatocellular carcinoma in patients after tumor ablation and with low AFP level. Viruses 2022;14:775.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献