PAK6 promotes homologous-recombination to enhance chemoresistance to oxaliplatin through ATR/CHK1 signaling in gastric cancer

Author:

Huang WeicaiORCID,Han Zhen,Sun Zepang,Feng Hao,Zhao Liying,Yuan Qingyu,Chen Chuanli,Yu ShitongORCID,Hu Yanfeng,Yu Jiang,Liu Hao,Li GuoxinORCID,Jiang Yuming

Abstract

AbstractChemoresistance remains the primary challenge of clinical treatment of gastric cancer (GC), making the biomarkers of chemoresistance crucial for treatment decision. Our previous study has reported that p21-actived kinase 6 (PAK6) is a prognostic factor for selecting which patients with GC are resistant to 5-fluorouracil/oxaliplatin chemotherapy. However, the mechanistic role of PAK6 in chemosensitivity remains unknown. The present study identified PAK6 as an important modulator of the DNA damage response (DDR) and chemosensitivity in GC. Analysis of specimens from patients revealed significant associations between the expression of PAK6 and poorer stages, deeper invasion, more lymph node metastases, higher recurrence rates, and resistance to oxaliplatin. Cells exhibited chemosensitivity to oxaliplatin after knockdown of PAK6, but showed more resistant to oxaliplatin when overexpressing PAK6. Functionally, PAK6 mediates cancer chemoresistance by enhancing homologous recombination (HR) to facilitate the DNA double-strand break repair. Mechanistically, PAK6 moves into nucleus to promote the activation of ATR, thereby further activating downstream repair protein CHK1 and recruiting RAD51 from cytoplasm to the DNA damaged site to repair the broken DNA in GC. Activation of ATR is the necessary step for PAK6 mediated HR repair to protect GC cells from oxaliplatin-induced apoptosis, and ATR inhibitor (AZD6738) could block the PAK6-mediated HR repair, thereby reversing the resistance to oxaliplatin and even promoting the sensitivity to oxaliplatin regardless of high expression of PAK6. In conclusion, these findings indicate a novel regulatory mechanism of PAK6 in modulating the DDR and chemoresistance in GC and provide a reversal suggestion in clinical decision.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3