Abstract
AbstractB-cell acute lymphoblastic leukemia (B-ALL) is an aggressive hematological disorder with a dismal prognosis. The dysregulation of histone acetylation is of great significance in the pathogenesis and progression of B-ALL. Regarded as a fundamental acetyltransferase gene, the role of HBO1 (lysine acetyltransferase 7/KAT7) in B-ALL has not been investigated. Herein, we found that HBO1 expression was elevated in human B-ALL cells and associated with poor disease-free survival. Strikingly, HBO1 knockdown inhibited viability, proliferation, and G1-S cycle progression in B-ALL cells, while provoking apoptosis. In contrast, ectopic overexpression of HBO1 enhanced cell viability and proliferation but inhibited apoptotic activation. The results of in vivo experiments also certificated the inhibitory effect of HBO1 knockdown on tumor growth. Mechanistically, HBO1 acetylated histone H3K14, H4K8, and H4K12, followed by upregulating CTNNB1 expression, resulting in activation of the Wnt/β-catenin signaling pathway. Moreover, a novel small molecule inhibitor of HBO1, WM-3835, potently inhibited the progression of B-ALL. Our data identified HBO1 as an efficacious regulator of CTNNB1 with therapeutic potential in B-ALL.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献