Differential signalling requirements for RIPK1-dependent pyroptosis in neutrophils and macrophages

Author:

Yow See Jie,Rosli Safwah Nasuha,Hutchinson Paul E.,Chen Kaiwen W.ORCID

Abstract

AbstractTLR4 and TNFR1 signalling promotes potent proinflammatory signal transduction events, thus, are often hijacked by pathogenic microorganisms. We recently reported that myeloid cells retaliate Yersinia blockade of TAK1/IKK signalling by triggering RIPK1-dependent caspase-8 activation that promotes downstream GSDMD and GSDME-mediated pyroptosis in macrophages and neutrophils respectively. However, the upstream signalling events for RIPK1 activation in these cells are not well defined. Here, we demonstrate that unlike in macrophages, RIPK1-driven pyroptosis and cytokine priming in neutrophils are driven through TNFR1 signalling, while TLR4-TRIF signalling is dispensable. Furthermore, we demonstrate that activation of RIPK1-dependent pyroptosis in neutrophils during Yersinia infection requires IFN-γ priming, which serves to induce surface TNFR1 expression and amplify soluble TNF secretion. In contrast, macrophages utilise both TNFR1 and TLR4-TRIF signalling to trigger cell death, but only require TRIF but not autocrine TNFR1 for cytokine production. Together, these data highlight the emerging theme of cell type-specific regulation in cell death and immune signalling in myeloid cells.

Funder

MOH | National Medical Research Council

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3